2010 DRINKING WATER QUALITY REPORT

Is my water safe?

We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Your water source is from one well pumping from the Meridian Upper Wilcox Aquifer.

Source water assessment and its availability

To obtain additional information about your drinking water you may contact our certified water works operator, Mr. Eddie Mauldin at 601-855-5471, or you may prefer to log on the Internet and obtain specific information about your system and its compliance history at the following address http://www.msdh.state.us/watersupply/index.htm.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791).

How can I get involved?

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. CANTON MUNICIPAL UTILITIES is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Water Quality Data Table

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table.

<u>Contaminants</u>	MCLG or MRDLG	MCL, TT, or <u>MRDL</u>	Your <u>Water</u>		nge <u>High</u>	Sample <u>Date</u>	<u>Violation</u>	<u>Typical Source</u>
Disinfectants & Dis	infectant B	y-Produc	ts					
(There is convincing	evidence th	at additio	n of a di	sinfect	ant is n	ecessary i	for control o	of microbial contaminants)
Chlorine (as Cl2) (ppm)	4	4	2.6	1.4	2.6	2010	No	Water additive used to control microbes
TTHMs [Total Trihalomethanes] (ppb)	NA	80	58	42	58	2010	No	By-product of drinking water disinfection
Haloacetic Acids (HAA5) (ppb)	NA	60	61	36	61	2010	Yes	By-product of drinking water chlorination
Inorganic Contami	nants							
Barium (ppm)	2	2	0.018	NA		2009	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Chromium (ppb)	100	100	1.779	NA		2009	No	Discharge from steel and pulp mills; Erosion of natural deposits
Fluoride (ppm)	4	4	0.315	NA		2009	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories

<u>Contaminants</u> Inorganic Contamin	MCLG ants	<u>AL</u>	Your <u>Water</u>	Sample <u>Date</u>	# Samples Exceeding AL	Exceeds AL	<u>Typical Source</u>
Lead - action level at consumer taps (ppb)		15	2	2008	0	No	Corrosion of household plumbing systems; Erosion of natural deposits
Copper - action level at consumer taps (ppm)	1.3	1.3	0.3	2008	0	No	Corrosion of household plumbing systems; Erosion of natural deposits

j.

Violations and Exceedances

Haloacetic Acids (HAA5)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer. This violation was detected in the first quarter of 2010. Additional samples taken throughout the year indicted there were no further violations.

Term	Definition
ppm	ppm: parts per million, or milligrams per liter (mg/L)
ppb	ppb: parts per billion, or micrograms per liter (μg/L)
NA	NA: not applicable
ND	ND; Not detected
NR	NR: Monitoring not required, but recommended.

Important Drinking Water Definitions	
Term	Definition
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
MNR	MNR: Monitored Not Regulated
MPL	MPL: State Assigned Maximum Permissible Level

For more information please contact:

Contact Name: EDDIE MAULDIN

Address:

225 NORTH HARGON STREET

CANTON, MS 39046 Phone: 601-855-5471

E-Mail: M.SNOW@CMU.COM

Website: CMU.COM

2010 DRINKING WATER QUALITY REPORT

Is my water safe?

We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Your water comes from four wells pumping from the Sparta Sand Aquifer.

Source water assessment and its availability

To obtain additional information about your drinking water you may contact our certified water works operator, Mr. Eddie Mauldin at 601-855-5471 or you may prefer to log on to the Internet and obtain specific information about your system and its compliance history at the following address http://www.msdh.state.us/watersupply/index.htm.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791).

How can I get involved?

Fluoridation of Community Water Supplies

To comply with the "Regulation Governing Fluoridation of Community Water Suppplies", the CITY OF CANTON is required to report certain results pertaining to fluoridation of our water system. The number of months in the previous calendar year that average fluoride sample results were within the optimal range of 0.7-1.3 ppm was 1. The percentage of fluoride samples collected in the previous calendar year that was within the optimal range of 0.7-1.3 ppm was 60%.

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. CITY OF CANTON 450006 is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Water Quality Data Table

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms. we have provided the definitions below the table.

<u>Contaminants</u>	MCLG or MRDLG	MCL, TT, or MRDL	Your <u>Water</u>		nge High	Sample <u>Date</u>	<u>Violation</u>	Typical Source
Disinfectants & Disinfectant By-Products								
(There is convincing	evidence th	at additic	n of a di	sinfect	ant is p	ecessary 1	for control c	f microbial contaminants)
Chlorine (as Cl2) (ppm)	4	4	2.54	1,75	2.54	2010	No	Water additive used to control microbes
TTHMs [Total Trihalomethanes] (ppb)	NA	80	48	38	48	2010	NO	By-product of drinking water disinfection
Haloacetic Acids (HAA5) (ppb)	NA	60	31	24	31	2010		By-product of drinking water chlorination

Inorganic Contamin	ants									
Barium (ppm)	2	2	0.0395	NA		2009		No	Discharge refineries; deposits	of drilling wastes; from metal Erosion of natural
Chromium (ppb)	100	100	1.2	NA		2008		No		from steel and pulp sion of natural
Fluoride (ppm)	4	4	1.23	1.23	1.57	2010]	No	Water add promotes	natural deposits; itive which strong teeth; from fertilizer and factories
Radioactive Contam	inants									
Uranium (ug/L)	0	30	0.025	NA		2009		No	Erosion of	natural deposits
Alpha emitters (pCi/L)	0	15	1.37	NA		2009]	No	Erosion of	natural deposits
Radium (combined 226/228) (pCi/L)	0	5	0.332	NA		2009]	No	Erosion of	natural deposits
<u>Contaminants</u>	MCLG	<u>AL</u>	Your <u>Water</u>	Sam <u>Da</u> t		# Sample Exceeding		Excee AL		ypical Source
Inorganic Contamin	ants									
Lead - action level at consumer taps (ppb)	0	15	2	200	7	0	N		plumbi	on of household ng systems; Erosion ral deposits
Copper - action level at consumer taps (ppm)	1.3	1.3	0	200	2007 0			No	plumbi	on of household ng systems; Erosion ral deposits

Term	Definition
ug/L	ug/L: Number of micrograms of substance in one liter of wate
ppm	ppm: parts per million, or milligrams per liter (mg/L)
ppb	ppb: parts per billion, or micrograms per liter (μg/L)
pCi/L	pCi/L: picocuries per liter (a measure of radioactivity)
NA	NA: not applicable
ND	ND: Not detected
NR	NR: Monitoring not required, but recommended.

Important Drinking Water Definitions	
Term	Definition
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.

MPL	MPL: State Assigned Maximum Permissible Level
MNR	MNR: Monitored Not Regulated
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

For more information please contact:

Contact Name: EDDIE MAULDIN

Address:

225 NORTH HARGON STREET

CANTON, MS 39046 Phone: 601-855-5471

E-Mail: M.SNOW@CMU.COM Website: WWW.CMU.COM

Lake Caroline North

2010 DRINKING WATER QUALITY REPORT

Is my water safe?

We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Your water source is from one well pumping from the Sparta Sand Aquifer.

Source water assessment and its availability

To obtain additional information about your drinking water you may contact our certified water works operator, Mr. Eddie Mauldin at 601-855-5471, or your may prefer to log on to the Internet and obtain specific information about your system and its compliance history at the following address http://www.msdh.state.us/watersupply/index.htm.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791).

How can I get involved?

Lake Caroline North

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. CANTON MUNICIPAL UTILITIES 4500035 is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. Lead was not monitored during this reporting period.

Water Quality Data Table

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table.

<u>Contaminants</u>	MCLG or MRDLG	TT, or	Your <u>Water</u>	31/4/2005	nge <u>High</u>	Sample Date	Violation	Typical Source
Disinfectants & Dis	infectant B	v-Produc	ts					· · · · · · · · · · · · · · · · · · ·
(There is convincing	evidence th	at additic	n of a di	sinfect	ant is n	ecessary i	for control o	of microbial contaminants)
Chlorine (as Cl2) (ppm)	4	4	2.7	1.15	2.7	2010	No	Water additive used to control microbes
TTHMs [Total Trihalomethanes] (ppb)	NA	80	5.49	NA		2009	No	By-product of drinking water disinfection
Haloacetic Acids (HAA5) (ppb)	NA	60	0	NA		2009	No	By-product of drinking water chlorination
Inorganic Contamii	nants							
Barium (ppm)	2	2	0.0189	NA		2010	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits

Lake Caroline North

Term	Definition
ppm	ppm: parts per million, or milligrams per liter (mg/L)
ppb	ppb: parts per billion, or micrograms per liter (μg/L)
NA	NA: not applicable
ND	ND: Not detected
NR	NR: Monitoring not required, but recommended.

Important Drinking Water Definition	ms
Term	Definition
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MRDL,	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
MNR	MNR: Monitored Not Regulated
MPL	MPL: State Assigned Maximum Permissible Level

For more information please contact:

Contact Name: EDDIE MAULDIN

Address:

225 NORTH HARGON STREET

CANTON, MS 39046 Phone: 601-855-5472

E-Mail: M.SNOW@CMU.COM Website: WWW.CMU.COM

Lake Caroline South 2010 DRINKING WATER QUALITY REPORT

Is my water safe?

We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Your water source is from one well pumping from the Meridian Upper Wilcox Aquifer.

Source water assessment and its availability

To obtain additional information about your drinking water you may contact our certified water works operator, Mr. Eddie Mauldin at 601-855-5471, or you may prefer to log on the the Internet and obtain specific information about your system and its compliance history at the following address http://www.msdh.state.us/watersupply/index.htm.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791).

How can I get involved?

Lake Caroline South

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. CANTON MUNICIPAL UTILITIES 450034 is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing for \$10.00 per sample. Please contact 601-576-7582 if you wish to have your water tested.

Water Quality Data Table

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table.

<u>Contaminants</u>	MCLG or MRDLG	TT, or			inge <u>High</u>	Sample <u>Date</u>	<u>Violation</u>	Typical Source
Disinfectants & Dis	infectant B	y-Produ	ets					
(There is convincing	evidence th	at additio	on of a di	sinfect	ant is n	ecessary f	or control o	f microbial contaminants)
Chlorine (as Cl2) (ppm)	4	4	2.95	1.2	2.95	2010	No	Water additive used to control microbes
TTHMs [Total Trihalomethanes] (ppb)	NA	80	1.24	NA		2009	No	By-product of drinking water disinfection
Haloacetic Acids (HAA5) (ppb)	NA	60	0	NA		2009	No	By-product of drinking water chlorination
Inorganic Contamir	nants							
Barium (ppm)	2	2	0,0126	NA		2010	INU	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Selenium (ppb)	50	50	0.9	NA		2010	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines

Lake Caroline South

				_					
Chromium (ppb)	100	100	4.2	NA		2008		No 1	Discharge from steel and pulp nills; Erosion of natural leposits
Volatile Organic Co	ntaminant:	\$							
Xylenes (ppm)	10	10	0.0015	NA		2009]	No fa	Pischarge from petroleum nctories; Discharge from hemical factories
Dichloromethane (ppb)	0	5	0.836	NA		2009]	No p	Discharge from harmaceutical and chemical actories
<u>Contaminants</u>	MCLG	<u>AL</u>	Your <u>Water</u>	Sam <u>Da</u> t		# Sample Exceeding		Exceed <u>AL</u>	s <u>Typical Source</u>
Inorganic Contamin	ants								
Lead - action level at consumer taps (ppb)	0	15	6.6	200)8	0	•	No	Corrosion of household plumbing systems; Erosion of natural deposits
Copper – action level at consumer taps (ppm)	1.3	1.3	0.4575	200)8	0		No	Corrosion of household plumbing systems; Erosion of natural deposits

Descriptions	
Term	Definition
ppm	ppm: parts per million, or milligrams per liter (mg/L)
ppb	ppb: parts per billion, or micrograms per liter (μg/L)
NA	NA: not applicable
ND	ND: Not detected
NR	NR: Monitoring not required, but recommended.

Important Drinking Water Definitions						
Term	Definition					
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.					
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.					
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.					
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.					
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.					
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.					
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.					
MNR	MNR: Monitored Not Regulated					
MPL	MPL: State Assigned Maximum Permissible Level					

Lake Caroline South

For more information please contact:

Contact Name: EDDIE MAULDIN

Address:

225 N. HARGON STREET CANTON, MS 39046 Phone: 601-855-5471

E-Mail: M.SNOW@CMU.COM Website: WWW.CMU.COM

Levi

2010 DRINKING WATER QUALITY REPORT

Is my water safe?

We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Your water source is from the Sparta Sand Aquifer.

Source water assessment and its availability

To obtain additional information about your drinking water you may contact our certified water works operator, Mr. Eddie Mauldin at 601-855-5471, or your may prefer to log on to the Internet and obtain specific information about your system and its compliance history at the following address http://www.msdh.state.us/watersupply/index.htm.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791).

How can I get involved?

Water Quality Data Table

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table.

Contaminants	MCLG or MRDLG	TT, or	Your Water		nge High	Sample Date	Violation	Typical Source
Disinfectants & Disi	are and the second second second second							
The second secon	and the second of the second o	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		sinfect	ant is n	ecessary f	for control o	of microbial contaminants)
Chlorine (as Cl2) (ppm)	4	4	2.8	1.65	2.8	2010	No	Water additive used to control microbes
TTHMs [Total Trihalomethanes] (ppb)	NA	80	113	NA		2010	Yes	By-product of drinking water disinfection
Haloacetic Acids (HAA5) (ppb)	NA	60	90	NA		2010	Yes	By-product of drinking water chlorination
Inorganic Contamin	ants							
Barium (ppm)	2	2 .	0.01315	NA		2010	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Fluoride (ppm)	4	4	0.151	NA		2010	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Volatile Organic Cor	ntaminants							
Xylenes (ppm)	10	10	0.00774	0.001 75	0.0077 4	2010	No	Discharge from petroleum factories; Discharge from chemical factories
Ethylbenzene (ppb)	700	700	1.73	0.668	1.73	2010	NO.	Discharge from petroleum refineries

Violations and Exceedances

TTHMs [Total Trihalomethanes]

Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous system, and may have an increased risk of getting cancer. Since only one sample was taken, it was determined not to be in violation. Additional samples will be taken in the following year.

Haloacetic Acids (HAA5)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer. Since only one sample was taken, it was determined not to be in violation. Additional samples will be taken in the following year.

Levi

Term	Definition
ppm	ppm: parts per million, or milligrams per liter (mg/L)
ppb	ppb: parts per billion, or micrograms per liter (μg/L)
NA	NA: not applicable
ND	ND: Not detected
NR	NR: Monitoring not required, but recommended.

Important Drinking Water Definitio	ns
Term	Definition
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
MNR	MNR: Monitored Not Regulated
MPL	MPL: State Assigned Maximum Permissible Level

For more information please contact:

Contact Name: EDDIE MAULDIN

Address:

225 NORTH HARGON STREET

CANTON, MS 39046 Phone: 601-855-5471

E-Mail: M.SNOW@CMU.COM

Website: CMU.COM

Way Road

2010 DRINKING WATER QUALITY REPORT

Is my water safe?

We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Your water source is from two wells pumping from the Meridian Upper Wilcox Aquifer.

Source water assessment and its availability

To obtain additional information about your drinking water you may contact our certified water works operator, Mr. Eddie Mauldin at 601-855-5471, or you may prefer to log on to the Internet and obtain specific information about your system and its compliance history at the following address http://www.msdh.state.us/watersupply/index.htm.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791).

How can I get involved?

Way Road

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. CANTON MUNICIPAL UTILITIES 45003 is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing for \$10.00 per sample. Please call 601-576-7582 if you wish to have your water tested.

Water Quality Data Table

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table.

Contaminants	MCLG or MRDLG	MCL, TT, or MRDL	Your <u>Water</u>	ŧ	ange High	Sample <u>Date</u>	Violation	Typical Source
Disinfectants & Dis	infectant B	y-Produc	ts					
(There is convincing	evidence th	at additic	ıı of a di	sinfec	ant is n	ecessary 1	or control	of microbial contaminants)
Chlorine (as Cl2) (ppm)	4	4	3,2	0.6	3.2	-2010	No	Water additive used to control microbes
TTHMs [Total Trihalomethanes] (ppb)	NA	80	65.44	2.7	65,44	2010	No	By-product of drinking water disinfection
Haloacetic Acids (HAA5) (ppb)	NA	60	50	20	50	2010	No	By-product of drinking water chlorination
Inorganic Contamir	ants							
Barium (ppm)	2	2	0.007	NA		2009	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Chromium (ppb)	100	100	2.638	NA		2009	No	Discharge from steel and pulp mills; Erosion of natural deposits
Cadmium (ppb)	5	5	0.4	ΝA		2008	No	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; runoff from waste batteries and paints

Fluoride (ppm)	4	4	0.307	NA NA		No [Brosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and Iluminum factories
<u>Contaminants</u>	<u>MCLG</u>	<u>AL</u>	Your <u>Water</u>	Sample <u>Date</u>	# Samples Exceeding AL	Exceed AL	s <u>Typical Source</u>
Inorganic Contamin	ants						
Lead - action level at consumer taps (ppb)	0	15	4	2008	0	No	Corrosion of household plumbing systems; Erosion of natural deposits
Copper - action level at consumer taps (ppm)	1.3	1.3	0.3	2008	0	No	Corrosion of household plumbing systems; Erosion of natural deposits

Term	Definition
ppm	ppm: parts per million, or milligrams per liter (mg/L)
ppb	ppb: parts per billion, or micrograms per liter (μg/L)
NA	NA: not applicable
ND	ND: Not detected
NR	NR: Monitoring not required, but recommended.

Term	Definition
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant drinking water below which there is no known or expected risk to health MCLGs allow for a margin of safety.
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminar that is allowed in drinking water. MCLs are set as close to the MCLGs a feasible using the best available treatment technology.
ТТ	TT: Treatment Technique: A required process intended to reduce the leve of a contaminant in drinking water.
AL	AL: Action Level: The concentration of a contaminant which, if exceeded triggers treatment or other requirements which a water system must follow
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCI or a treatment technique under certain conditions.
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected rish to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
MNR	MNR: Monitored Not Regulated
MPL	MPL: State Assigned Maximum Permissible Level

For more information please contact:

Contact Name: EDDIE MAULDIN

Address:

225 NORTH HARGON STREET

CANTON, MS 39046 Phone: 601-855-5472

E-Mail: WWW.M.SNOW@CMU.COM Website: WWW.CMU.COM